

Institute: University of Basrah
College of Sciences
Department of Mathematics
Email: mohna_1@yahoo.com
mohammed.ibrahim@uobasrah.edu.iq
Date: October 8, 2022

Contents

GROUP THEORY: PART II

Homomorphisms of groups

Definition: Let (G, \star) and $\left(G^{\prime}, \star^{\prime}\right)$ be two groups. A map $\varphi: G \rightarrow G^{\prime}$ is said to be a group homomorphism if for all $a, b \in G$:

$$
\varphi(a \star b)=\varphi(a) \star^{\prime} \varphi(b) .
$$

A kernel of φ, denoted by $\operatorname{ker}(\varphi)$, is the set:

$$
\operatorname{ker}(\varphi)=\left\{a \in G: \varphi(a)=e^{\prime}\right\}
$$

where e^{\prime} is the identity of G^{\prime}. The image of φ, denoted by $\operatorname{im}(\varphi)$, is the set:

$$
\operatorname{im}(\varphi)=\left\{\varphi(a) \in G^{\prime}: a \in G\right\} .
$$

Note that $\operatorname{ker}(\varphi) \subseteq G$, while $\operatorname{im}(\varphi) \subseteq G^{\prime}$.
Theorem: Let (G, \star) and $\left(G^{\prime}, \star^{\prime}\right)$ be two groups, and let $\varphi: G \rightarrow G^{\prime}$ be a group homomorphism. Then

1. $\varphi(e)=e^{\prime}$, where e and e^{\prime} are the identities of G and G^{\prime} respectively.
2. $\varphi\left(a^{-1}\right)=(\varphi(a))^{-1}$.
3. $\operatorname{ker}(\varphi) \leq G$.
4. $\operatorname{im}(\varphi) \leq G^{\prime}$.
5. $\operatorname{ker}(\varphi)=\{e\} \Longleftrightarrow \varphi$ is one-one.

Proof

1. $\varphi(e)=\varphi(e \star e)=\varphi(e) \star^{\prime} \varphi(e)$. On the other hand, $\varphi(e)=\varphi(e) \star^{\prime} e^{\prime}$.

So,

$$
\varphi(e) \star^{\prime} \varphi(e)=\varphi(e) \star^{\prime} e^{\prime}
$$

By cancellation law, we get $\varphi(e)=e^{\prime}$.
2. $\varphi\left(a \star a^{-1}\right)=\varphi(e)=e^{\prime}$. Since φ is a group homomorphism, we have

$$
\varphi\left(a \star a^{-1}\right)=\varphi(a) \star^{\prime} \varphi\left(a^{-1}\right)=\epsilon^{\prime}=\varphi(a) \star^{\prime}(\varphi(a))^{-1} .
$$

By cancellation law, we get $\varphi\left(a^{-1}\right)=(\varphi(a))^{-1}$.
3. Let $x, y \in \operatorname{ker}(\varphi)$.
(a). $e \in \operatorname{ker}(\varphi)$ since $\varphi(e)=e^{\prime}[\operatorname{by}(1)]$.
(b). Since $x, y \in \operatorname{ker}(\varphi)$, we have $\varphi(x)=\varphi(y)=e^{\prime}$. Want to show that $x \star y^{-1} \in \operatorname{ker}(\varphi)$, i.e. $\varphi\left(x \star y^{-1}\right)=e^{\prime}$. Note that:

$$
\begin{aligned}
\varphi\left(x \star y^{-1}\right) & =\varphi(x) \star^{\prime} \varphi(y)=\varphi(x) \star^{\prime} \varphi\left(y^{-1}\right) \\
& =\varphi(x) \star^{\prime}(\varphi(y))^{-1}=e^{\prime} \star e^{\prime-1}=e^{\prime} \star e^{\prime}=e^{\prime}
\end{aligned}
$$

Thus $\operatorname{ker}(\varphi) \leq G$.
Let $x^{\prime}, y^{\prime} \in \operatorname{im}(\varphi)$.
(a). $e^{\prime} \in \operatorname{im}(\varphi)$ since $e^{\prime}=\varphi(e) \in \operatorname{im}(\varphi)$ [by (1)].
(b). Want to show that $x^{\prime} \star^{\prime} y^{\prime-1} \in \operatorname{im}(\varphi)$. We have $x^{\prime}=\varphi(x)$ and $y^{\prime}=\varphi(y)$ for some $x, y \in G$

$$
\varphi\left(x \star y^{-1}\right)=\varphi(x) \star^{\prime} \varphi\left(y^{-1}\right)=\varphi(x) \star^{\prime}(\varphi(y))^{-1}=x^{\prime} \star^{\prime} y^{\prime-1}
$$

So, $x^{\prime} \star^{\prime} y^{\prime-1} \in \operatorname{im}(\varphi)\left[\right.$ since $\left.x \star y^{-1} \in G\right]$. Thus $\operatorname{im}(\varphi) \leq G^{\prime}$.
5. Assume that $\operatorname{ker}(\varphi)=\{e\}$. Let $\varphi(x)=\varphi(y)$. Want to show that

$$
\begin{aligned}
& x=y: \\
& \varphi(x)=\varphi(y) \Longrightarrow \varphi(x) \star^{\prime}(\varphi(y))^{-1}=\varphi(y) \star^{\prime}(\varphi(y))^{-1}=e^{\prime} \\
& \Longrightarrow \varphi(x) \star^{\prime}(\varphi(y))^{-1}=\varphi(x) \star^{\prime} \varphi\left(y^{-1}\right)=e^{\prime} \quad[\text { by } 2] \\
& \Longrightarrow \varphi\left(x \star y^{-1}\right)=e^{\prime} \quad \text { since } \varphi \text { is group homomorphism } \\
& \Longrightarrow x \star y^{-1} \in \operatorname{ker}(\varphi)=\{e\} \Longrightarrow x \star y^{-1}=e \\
& \Longrightarrow x \star y^{-1} \star y=e \star y=y \nRightarrow x \star e=y \Longrightarrow x=y
\end{aligned}
$$

Conversely, assume that φ is one-one, and let $x \in \operatorname{ker}(\varphi)$. Want to show that $x=e$.

$$
\begin{aligned}
x \in \operatorname{ker}(\varphi) & \Longrightarrow \varphi(x)=e^{\prime}=\varphi(e)[\text { by }(1)] \\
& \Longrightarrow x=e \quad[\text { since } \varphi \text { is one-one }] .
\end{aligned}
$$

DEFINITION: A group homomorphism $\varphi: G \rightarrow G^{\prime}$ is said to be

- epimorphism if it is onto, i.e. $\operatorname{im}(\varphi)=\varphi(G)=G^{\prime}$.
- monomorphism if it is one-one, i.e. $\operatorname{ker}(\varphi)=\{e\}$.
- isomorphism if it is epimorphism and monomorphism. In this case, we say G isomorphic to G^{\prime}, and we write $G \cong G^{\prime}$.
- automorphism if it is isomorphism and $G=G^{\prime}$.
- trivial homomorphism if $\varphi(a)=e^{\prime}$ for all $a \in G$.
- identity homomorphism if $G=G^{\prime}$ and $\varphi(a)=a$ for all $a \in G$.

Example: I. The $\operatorname{map} \varphi:(\mathbb{R},+) \rightarrow\left(\mathbb{R}^{+}, \cdot\right)$ defined by $\varphi(x)=e^{x}$ is an isomorphism and hence $\mathbb{R} \cong \mathbb{R}^{+}$.

Claim:

1. φ is a group homomorphism: Let $x, y \in \mathbb{R}$. Then

$$
\varphi(x+y)=e^{x+y}=e^{x} \cdot e^{y}=\varphi(x) \cdot \varphi(y)
$$

2. φ is one-one:

$$
\operatorname{ker}(\varphi)=\{x \in \mathbb{R}: \varphi(x)=1\}=\left\{x \in \mathbb{R}: e^{x}=1\right\}=\{0\}
$$

3. φ is onto: Let $y \in \mathbb{R}^{+}$(codomain). Want to find $x \in \mathbb{R}$ (domain) such that $\varphi(x)=y$. Since $y \in \mathbb{R}^{+}$, we can take $x=\ln (y) \in \mathbb{R}$. Note that

$$
\varphi(x)=e^{x}=e^{\ln (y)}=y
$$

Thus $\mathbb{R} \cong \mathbb{R}^{+}$.
Example: II. Show that the $\operatorname{map} \varphi:(\mathbb{R} \backslash\{0\}, \cdot) \rightarrow\left(\mathbb{R}^{+}, \cdot\right)$ defined by $\varphi(x)=|x|$ is an epimorphism. What is the kernel of φ ?

Answer:

1. φ is a grøup homomorphism: Let $x, y \in \mathbb{R}$. Then

$$
\varphi(x \cdot y)=|x \cdot y|=|x| \cdot|y|=\varphi(x) \cdot \varphi(y)
$$

2. φ is onto: Let $y \in \mathbb{R}^{+}$(codomain). Want to find $x \in \mathbb{R} \backslash\{0\}$ (domain) such that $\varphi(x)=y$. Since $y \in \mathbb{R}^{+}$, we can take $x=y \in \mathbb{R} \backslash\{0\}$. Note that

$$
\varphi(x)=|x|=x=y
$$

Finally, let us find $\operatorname{ker}(\varphi)$:

$$
\operatorname{ker}(\varphi)=\{x \in \mathbb{R} \backslash\{0\}: \varphi(x)=1\}=\{x \in \mathbb{R}:|x|=1\}=\{-1,1\}
$$

ExAmple: III. Let H be a subgroup of a group (G, \star), and let $a \in G$. Prove that $H \cong a \star H \star a^{-1}$.

Proof Recall that $a \star H \star a^{-1}=\left\{a \star h \star a^{-1}: h \in H\right\}$.
Define a map $\varphi: H \rightarrow a \star H \star a^{-1}$ by $\varphi(h)=a \star h \star a^{-1}$ for all $h \in H$.
Now, we prove that φ is an isomorphism:

1. φ is a group homomorphism: Let $x, y \in H$. Then

$$
\varphi(x \star y)=a \star(x \star y) \star a^{-1}=\left(a \star x \star a^{-1}\right) \star\left(a \star y \star a^{-1}\right)=\varphi(x) \star \varphi(y)
$$

2. φ is one-one:

$$
\operatorname{ker}(\varphi)=\{x \in H: \varphi(x)=e\}=\left\{x \in H: a \star x \star a^{-1}=e\right\}=\{e\}
$$

3. φ is onto: Let $y \in a \star H \star a^{-1}$ (codomain). Want to find $x \in H$ (domain) such that $\varphi(x)=y$. Since $y \in a \star H \star a^{-1}$, there is $h \in H$ such that $y=a \star h \star a^{-1}$. We can take $x=h \in H$. Note that

$$
\varphi(x)=\varphi(h)=a \star h \star a^{-1}=y
$$

Thus $H \cong a \star H \star a$
Problems: Which of the following maps is an isomorphism/a monomorphism/ an epimorphism:

1. $\varphi:(\mathbb{Z},+) \rightarrow(2 \mathbb{Z},+)$ defined by $\varphi(x)=2 x$.
2. $\varphi_{m}:(\mathbb{Z},+) \rightarrow(m \mathbb{Z},+)$ defined by $\varphi(x)=m x$, where $m \in \mathbb{Z}^{+}$.
3. $\varphi:(\mathbb{Z},+) \rightarrow\left(\mathbb{Z}_{n},+\right)$ defined by

$$
\varphi(x)=\text { the reminder when } x \text { divided by } n
$$

THEOREM: Let $\varphi:(G, \star) \rightarrow\left(G^{\prime}, \star^{\prime}\right)$ be a group homomorphism, and
Let $H \leq G, H^{\prime} \leq G^{\prime}$. Then

1. $\varphi(H) \leq G^{\prime}$, where

$$
\varphi(H)=\{\varphi(h): h \in H\} \quad[\text { image of } H \text { under } \varphi]
$$

2. $\varphi^{-1}\left(H^{\prime}\right) \leq G$, where

$$
\varphi^{-1}\left(H^{\prime}\right)=\left\{h \in G: \varphi(h) \in H^{\prime}\right\} \quad\left[\text { preimage of } H^{\prime} \text { under } \varphi\right]
$$

Proof

1. Let $x^{\prime}, y^{\prime} \in \varphi(H)$. Then
(a). $e^{\prime}=\varphi(e) \in \varphi(H)$ since $e \in H$.
(b). $x^{\prime}, y^{\prime} \in \varphi(H)$ implies $x^{\prime}=\varphi(x), y^{\prime}=\varphi(y)$ for some $x, y \in H$.

Want to show $x^{\prime} \star^{\prime} y^{\prime-1} \in \varphi(H)$, i.e., we must find $h \in H$ such that $\varphi(h)=x^{\prime} \star^{\prime} y^{\prime-1}$. Take $h=x \star y^{-1} \in H$ (since $\left.H \leq G\right)$:

$$
\varphi(h)=\varphi\left(x \star y^{-1}\right)=\varphi(x) \star^{\prime} \varphi\left(y^{-1}\right)=\varphi(x) \star^{\prime}(\varphi(y))^{-1}=x^{\prime} \star^{\prime} y^{\prime-1} .
$$

2. Let $x, y \in \varphi^{-1}\left(H^{\prime}\right)$. Then
(a). $e \in \varphi^{-1}\left(H^{\prime}\right)$ since $e^{\prime}=\varphi(e) \in H^{\prime}$.
(b). $x, y \in \varphi^{-1}\left(H^{\prime}\right)$ implies $\varphi(x), \varphi(y) \in H^{\prime}$. Want to show $x \star y^{-1} \in$ $\varphi^{-1}\left(H^{\prime}\right)$, i.e., we must prove that $\varphi\left(x \star y^{-1}\right) \in H^{\prime}$:

$$
\varphi\left(x \star y^{-1}\right)=\varphi(x) \star^{\prime} \varphi\left(y^{-1}\right)=\varphi(x) \star^{\prime}(\varphi(y))^{-1} \in H^{\prime} .
$$

Theorem: (Cayley) Let (G, \star) be a group and $a \in G$. Then

1. The map $\lambda_{a}: G \rightarrow G$ defined by $\lambda_{a}(x)=a \star x$ is a permutation in S_{G}, where

$$
S_{G}=\{\text { all bijections } f: G \rightarrow G\} .
$$

2. $H=\left\{\lambda_{a}: a \in G\right\} \leq S_{G}$.
3. $G \cong H$.

Proof

1. It is enough to show that λ_{a} bijectíve:
(a). λ_{a} is onto: Let $y \in G$ (codomain). Want to find $x \in G$ (domain) such that $\lambda_{a}(x)=y$. Take $x=a^{-1} \star y \in G$. Then

$$
\lambda_{a}(x)=\lambda_{a}\left(a^{-1} \star y\right)=a \star\left(a^{-1} \star y\right)=\left(a \star a^{-1}\right) \star y=e \star y=y .
$$

(b). λ_{a} is one-one: Let $\lambda_{a}(x)=\lambda_{a}\left(x^{\prime}\right)$ for some $x, x^{\prime} \in G$. Then

$$
a \star x=a \star x^{\prime} \Longrightarrow x=x^{\prime} \text { (by cancellation law). }
$$

So, $\lambda_{a} \in S_{G}$.
2. Let $\lambda_{a}, \lambda_{b} \in H$.
(a). Since $\lambda_{e}(x)=e \star x=x$ for all $x \in G$. So, $\lambda_{e} \in H$ which is the identity of S_{G}.
(b). Note that,

$$
\lambda_{b^{-1}} \circ \lambda_{b}(x)=\lambda_{b^{-1}}(b \star x)=b \rightarrow^{\bullet} \star(b \star x)=\lambda_{e}(x) .
$$

Thus, $\left(\lambda_{b}\right)^{-1}=\lambda_{b^{-1}}$. Also,

$$
\lambda_{a} \circ \lambda_{b}(x)=\lambda_{a}(b \star x)=a \star(b \star x)=\lambda_{a \star b}(x) .
$$

Thus, $\lambda_{a} \circ \lambda_{b}=\lambda_{a \nless b}$. Now,

$$
\left.\lambda_{a} \circ\left(\lambda_{b}\right)-1\right\rangle=\lambda_{a} \circ \lambda_{b^{-1}}=\lambda_{a * b^{-1}} \in H .
$$

Hence, $H \leq S_{G}$
3. Define the map $\varphi \cdot G \rightarrow H$ by $\varphi(a)=\lambda_{a}$ for all $a \in G$.
(a). φ is a group homomorphism: Let $a, b \in G$.

$$
\varphi(a \star b)=X_{a \star b}=\lambda_{a} \circ \lambda_{b} .
$$

(b). φ is onto:

$$
\operatorname{im}(\varphi)=\left\{\lambda_{a}: a \in G\right\}=H .
$$

(c). φ is one-one: Let $\varphi(a)=\varphi(b)$. Then, in particular $\lambda_{a}(e)=$ $\lambda_{b}(e)$. That is,

$$
a \star e=b \notin e \Longrightarrow a=b
$$

Thus, $G \cong H$.

Cosets and Lagrange's Theorem

DEFINITION: Let (G, \star) be a group, and let $H \leq G, a \in G$. The set

$$
a \star H=\{a \star H: h \in H\}
$$

is called the left coset of H that containing a. The set

$$
H \star a=\{H \star a: h \in H\}
$$

is called the right coset of H that containing a. The number of all distinct left cosets of H, denoted by $[G: H]$, is called the index of H in G.

Note that:

- $H \star e=e \star H=(H$.
- If G is an abelian group, then $H \star a=H \star a$.

ExAMPLE: I. Consider the symmetric group $\left(S_{3}, \circ\right)$. We know that

$$
H=\left\langle\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\right\rangle=\left\{e,\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)\right\} \leq S_{3}
$$

Let us find $H \circ \sigma$ and $\sigma \circ H$ for all $\sigma \in S_{3}$. Recall,

$$
S_{3}=\left\{e,(12),(13),\left(\begin{array}{ll}
2 & 3
\end{array}\right),(123),(132)\right\}
$$

The following are all left and right cosets of H :

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 2
\end{array}\right) \circ H=\left(\begin{array}{ll}
1 & 3
\end{array}\right) \circ H=H \\
& (12) \circ H=(13) \circ H=(23) \circ H=\left\{(12),(13),\left(\begin{array}{ll}
2 & 3
\end{array}\right)\right\} \\
& H \circ\left(\begin{array}{ll}
1 & 2
\end{array}\right)=H \circ\left(\begin{array}{ll}
1 & 3
\end{array}\right) \circ H=H \\
& H \circ(12)=H \circ(13)=H \circ(23)=\left\{\left(\begin{array}{ll}
1 & 2
\end{array}\right),\left(\begin{array}{ll}
1 & 3
\end{array}\right),\left(\begin{array}{ll}
2 & 3
\end{array}\right)\right\} .
\end{aligned}
$$

Note that, for all $\sigma \in S_{3}$, we get $\sigma \circ H=H \circ \sigma$.

Example: II. Let us find all the left and right cosets of $H=\langle(12)\rangle$ in the symmetric group $\left(S_{3}, \circ\right)$. The following are all left and right cosets of $H=\{e,(12)\}$:

$$
\begin{aligned}
& (12) \circ H=H \\
& \left(\begin{array}{ll}
1 & 2
\end{array}\right) \circ H=\left(\begin{array}{ll}
1 & 3
\end{array}\right) \circ H=\left\{\left(\begin{array}{ll}
1 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\right\} \\
& (132) \circ H=\left(\begin{array}{ll}
2 & 3
\end{array}\right) \circ H=\left\{\left(\begin{array}{ll}
2 & 3
\end{array}\right),\left(\begin{array}{ll}
1 & 3
\end{array}\right)\right\} \\
& H \circ(12)=H \\
& H \circ\left(\begin{array}{ll}
1 & 3
\end{array}\right)=H \circ\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)=\left\{\left(\begin{array}{ll}
1 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)\right\} \\
& H \circ(23)=H \circ(123)=\left\{\left(\begin{array}{ll}
2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right)\right\} .
\end{aligned}
$$

Note that, $\left(\begin{array}{ll}1 & 3) \circ H \neq H \circ(13) \text {. }\end{array}\right.$

Example: III. Let us find all the left and right cosets of $H=3 \mathbb{Z}$ as a subgroup of the group $(\mathbb{Z},+)$. The following are all left and right cosets of $H=\{\ldots,-6,-3,0,3,6, \ldots\}$:

$$
\begin{aligned}
& 0+H=H=0+H=\{\ldots,-6,-3,0,3,6, \ldots\} \\
& 1+H=\{\ldots,-5,-2,1,4,7, \ldots\}=H+1 \\
& 2+H=\{\ldots,-4,-1,2,5,8, \ldots\}=H+2 \\
& 3+H=\{\ldots,-3,0,3,6,9, \ldots\}=H+2=H \\
& 4+H=\{\ldots,-2,1,4,7,10, \ldots\}=H+4=1+H
\end{aligned}
$$

So, the only distinct left cosets of H are $0+H, 1+H, 2+H$, i.e., $[\mathbb{Z}: 3 \mathbb{Z}]=3$.

Theorem: Let (G, \star) be a group, and let $H \leq G$. The set of all distinct left cosets of H forms a partition of G.

Proof First of all, we have $a \star H \neq \emptyset$ for all $a \in H$ since $a=a \star e \in a \star H$. Now, we need to prove that

1. If $a \star H$ and $b \star H$ are left cosets of H, then either $a \star H=b \star H$ or $a \star H \cap b \star H=\emptyset$.
2. $G=\bigcup_{a \in G} a \star H$.

Let us prove (1): Assume that $a \star H \cap b \star H \neq \emptyset$. Want to prove $a \star H=b \star H$.

Let $x \in(a \star H \cap b \star H)$. Then $x=a \star h_{1}$ and $x=b \star h_{2}$ for some $h_{1}, h_{2} \in H$. Hence,

$$
a \star h_{1}=b \star h_{2} \Rightarrow b^{-1} \star a=\star h_{2} \star h_{1}^{-1} \in H .
$$

So, $b^{-1} \star a \star H=H \Longrightarrow b \star b^{-1} \star a \star H=b \star H \Longrightarrow e \star a \star H=$ $b \star H \Longrightarrow a \star H=b \star H$.

Now, we prove (2): It is clear from definition of the left cosets, $\bigcup_{a \in G} a \star H \subseteq G$. On the other hand, assume that $a \in G$. Then $a \in a \star H$ (as we shown previously). So, $a \in \bigcup_{a \in G} a \star H$. It follows that $G \subseteq \bigcup_{a \in G} a \star H$.

Theorem: Let (G, \star) be a group, and let $H \leq G$. Then $|a H|=H$.

Proof Define a map $f: H \rightarrow a \star H$ by $f(h)=a \star h$ for all $h \in H$. We prove that f is bijection.

1. f is onto: Let $y \in a \star H$. Want to find $x \in H$ such that $f(y)=x$. Since $y \in a \star H$, there is $h \in H$ such that $y=a \star h$. So, we can take $x=h$. Note that

$$
f(x)=f(h)=a \star h=y
$$

2. f is one-one: Let $f(h)=f\left(h^{\prime}\right)$. Then

$$
a \star h=a \star h^{\prime} \Longrightarrow h=h^{\prime} \quad \text { (cancellation laws in a group) } .
$$

Theorem: [Lagrange Theorem] Let (G, \star) be a finite group, and let $H \leq G$. Then $|H|$ divides $|G|$, and hence $|G|=[G: H]|H|$.

Proof Let $\left\{a_{1} \star H, a_{2} \star H, \ldots, a_{k} \star H\right\}$ be the set of all distinct left cosets of H in G. That is, $[G: H]=k$. Then

$$
\begin{aligned}
G=\bigcup_{j=1}^{k} a_{j} \star H & \Longrightarrow|G|=\left|a_{1} \star H\right|+\left|a_{2} \star H\right|+\ldots+\left|a_{k} \star H\right| \\
& \Longrightarrow|G|=|H|+\ldots+|H| \quad(k-\text { times }) \\
& \Longrightarrow|G|=k|H|=[G: H]|H| .
\end{aligned}
$$

Thus, $|H|$ divides $|G|$.
Problems: [Applications on Lagrange Theorem] Let (G, \star) be a finite group of order n. Then

1. If $a \in G$, then $a^{n}=e$.
2. If $n=p$ (prime number), then G is cyclic group.

Normal subgroups

Definition: Let (G, \star) be a group, and let $H \leq G, a \in G$. Then H is said to be a normal subgroup of G, written $H \unlhd G$ if $a \star H=H \star a$ for all $a \in H$.

Note that:

- Any group (G, \star) has $\{e\}$ and G as normal subgroups.
- If (G, \star) is an abelian group, then any subgroup of G is normal.

Example: I. Consider the subgroup $H=3 \mathbb{Z}$ of the group $(\mathbb{Z},+)$. Then $H \unlhd \mathbb{Z}$ because $(\mathbb{Z},+)$ is an abelian group. In fact, $3 \mathbb{Z}+a=a+3 \mathbb{Z}$ for all $a \in \mathbb{Z}$.

Example: II. Consider the subgroup $H=\langle(12)\rangle$ of the group $\left(S_{3}, \circ\right)$. Then $H \nexists S_{3}$ because $(13) \circ H \neq H \circ(13)$. Note that, $H=\{e,(12)\}$ and

$$
\left.\begin{array}{l}
(13) \circ H=\left\{\left(\begin{array}{ll}
1 & 3
\end{array}\right) \circ e,\left(\begin{array}{ll}
1 & 3
\end{array}\right) \circ\left(\begin{array}{l}
1
\end{array}\right)\right\}=\left\{\left(\begin{array}{ll}
1 & 3
\end{array}\right),\left(\begin{array}{ll}
1 & 2
\end{array}\right)\right\} \\
H \circ(13)
\end{array}\right)=\left\{e \circ\left(\begin{array}{ll}
1 & 3
\end{array}\right),\left(\begin{array}{ll}
1 & 2
\end{array}\right) \circ\left(\begin{array}{ll}
1 & 3
\end{array}\right)\right\}=\left\{\left(\begin{array}{ll}
1 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)\right\} .
$$

Hence, $\left(\begin{array}{ll}1 & 3\end{array}\right) \circ H \neq H \circ\left(\begin{array}{ll}1 & 3\end{array}\right)$.

Problems: Let (G, \star) be a group, and let $H \leq G$. Then the following statements are equivalent

1. $H \unlhd G$.
2. $x^{-1} \star h \star x \in H$ for all $x \in G$ and $h \in H$.
3. $x^{-1} \star H \star x \subseteq H$ for all $x \in G$.
4. $x^{-1} \star H \star x=H$ for all $x \in G$.

ExAmPLE: Let (G, \star) be a group. Let us show that $Z(G) \unlhd G$.

1. First, we prove that $Z(G) \leq G$. it is clear that $e \in Z(G)$ since $x e=e x=x$ for all $x \in G$. Now, let $x, y \in Z(G)$. Want to prove that $x \star y^{-1} \in Z(G)$. Note that, for all $a \in G$:

$$
\begin{gathered}
\left(x \star y^{-1}\right) \star a=x \star a \star y^{-1} \quad \text { since } y^{-1} \star a=a \star y^{-1} \\
a \star\left(x \star y^{-1}\right) \quad \text { since } x \star a=a \star x .
\end{gathered}
$$

2. Secondly, we prove that $Z(G) \unlhd G$: it is enough to prove that $x^{-1} \star h \star$ $x \in Z(G)$ for all $x \in G$ and $h \in Z(G)$. Note that for all $x \in G$ and $h \in Z(G)$, we have $x \star h=h \star x$ "Definition of $Z(G)$ ". Consequently,
$x^{-1} \star x \star h=x^{-1} \star h \star x \Longrightarrow e \star h=x^{-1} \star h \star x \Longrightarrow h=x^{-1} \star h \star x$.
So, $x^{-1} \star h \star x=h \in Z(G)$ for all $x \in G$ and $h \in Z(G)$.
Theorem: Let (G, \star) be a group, and let $H \leq G$ with $[G: H]=2$. Then $H \unlhd G$.

Proof Let x be an element in G and $x \notin H$. Then $x \star H \neq H$ and $H \star x \neq H$. Since, there only two left cosets and two right cosets of H " $[G: H]=2$ ", we get $\{H, x \star H\} \neq\{H, H \star x\}$. It follows that $H \star x=x \star H$ for every $x \in G \curvearrowleft$ Thus, $H \unlhd G$.

DEFINITION: A group (G, \star) is said to be simple if the only normal subgroups G are $\{e\}$ and G itself.

Example: I. The group $\left(\mathbb{Z}_{5},+\right)$ is a simple group. In fact, the only normal subgroups of $\left(\mathbb{Z}_{5},+\right)$ are $\{0\}$ and \mathbb{Z}_{5}.

Example: II. The group $(\mathbb{R},+)$ is not simple group. In fact, $(\mathbb{Z},+)$ is normal subgroup of $(\mathbb{R},+)$ since $(\mathbb{R},+)$ is abelian group. Moreover, $\mathbb{Z} \neq \mathbb{R}$ and $\mathbb{Z} \neq\{0\}$

Quotient groups

Assume that (G, \star) is a group, and $H \unlhd G$. Let G / H be the set of all distinct cosets of H in G. For all $a \star H, b \star H$ in G / H, define

$$
(a \star H) \star(b \star H)=a \star b \star H
$$

Is \star a binary operation on G / H ?

Answer: Yes.

We must prove that \star is well-defined binary operation on G / H as
follows:

Let $a \star H=a^{\prime} \star H$ and $b \star H=b^{\prime} \star H$. Want to prove $a \star b \star H=a^{\prime} \star b^{\prime} \star H$.

Since $a \star H=a^{\prime} \star H$ and $b \star H=b^{\prime} \star H$, there are two element $h_{1}, h_{2} \in H$ such that $a=a^{\prime} \star h_{1}$ and $b=b^{\prime} \star h_{2}$. Also, we have $b^{\prime-1} \star h_{1} \star b^{\prime} \star h_{2} \in H$ because $H \unlhd G$. Now,

$$
\begin{aligned}
\left(a^{\prime} \star b^{\prime}\right)^{-1} \star(a \star b) & =b^{\prime-1} \star a^{\prime-1} \star a \star b \\
& =b^{\prime-1} \star a^{\prime-1} \star\left(a^{\prime} \star h_{1}\right) \star\left(b^{\prime} \star h_{2}\right) \\
& =b^{\prime-1} \star e \star h_{1} \star b^{\prime} \star h_{2} \\
& =b^{\prime-1} \star h_{1} \star b^{\prime} \star h_{2} \in H .
\end{aligned}
$$

Thus, $\left(a^{\prime} \star b^{\prime}\right)^{-1} \star(a \star b) \in H$ and hence $a \star b \star H=a^{\prime} \star b^{\prime} \star H$.
In fact, $(G / H, \star)$ forms a group called the quotient group (or factor group) of G by H.

What is the identity of G / H ?
Answer: $H=e \star H$, where e is the identity of G.

What is the inverse of $a \star H$ in G / H ?
Answer: $(a \star H)^{-1}=a^{-1} \star H$, where a^{-1} is the inverse of a in G.

Example: I. We know that $(\mathbb{Z},+)$ is an abelian group. So $6 \mathbb{Z} \unlhd \mathbb{Z}$. Let us find the quotient group $\mathbb{Z} / 6 \mathbb{Z}$:

$$
\begin{aligned}
0+6 \mathbb{Z} & =6 \mathbb{Z}=\{\ldots,-12,-6,0,6,12, \ldots\} \\
1+6 \mathbb{Z} & =\{\ldots,-11,-5,1,7,13, \ldots\} \\
2+6 \mathbb{Z} & =\{\ldots,-10,-4,2,8,14, \ldots\} \\
3+6 \mathbb{Z} & =\{\ldots,-9,-3,3,9,15, \ldots\} \\
4+6 \mathbb{Z} & =\{\ldots,-8,-2,4,10,16, \ldots\} \\
5+6 \mathbb{Z} & =\{\ldots,-7,-1,5,11,17, \ldots\} \\
6+6 \mathbb{Z} & =\{\ldots,-6,0,6,12,18, \ldots\}=6 \mathbb{Z}
\end{aligned}
$$

So, $\mathbb{Z} / 6 \mathbb{Z}=\{6 \mathbb{Z}, 1+6 \mathbb{Z}, 2+6 \mathbb{Z}, 3+6 \mathbb{Z}, 4+6 \mathbb{Z}, 5+6 \mathbb{Z}\}$.

ExAmple: II. In this example, we construct the quotient group of the abelian group $\left(\mathbb{Z}_{18},+\right)$ by the subgroup $H=\langle 6\rangle$. First of all, we have $H=\{0,6,12\}$. Now,

$$
\begin{aligned}
& 0+H=H=\{0,6,12\} \\
& 1+H=\{1,7,13\} \\
& 2+H=\{2,8,14\} \\
& 3+H=\{3,9,15\} \\
& 4+H=\{4,10,16\} \\
& 5+H=\{5,11,17\} \\
& 6+H=\{6,12,0\}=H
\end{aligned}
$$

So, $\mathbb{Z}_{18} / H=\{H, 1+H, 2+H, 3+H, 4+H, 5+H\}$.

Problems: Let (G, \star) be a group, and let $H \unlhd G$. Then

1. G is abelian $\Longrightarrow G / H$ is abelian.
2. $G=\langle a\rangle$ (cyclic generated by $a) \Longrightarrow G / H=\langle a \star H\rangle$ (cyclic generated by $a \star H)$.
3. G is finite $\Longrightarrow|G / H|=[G: H]=\frac{|G|}{|H|}$.
4. There is an epimorphism φ with domain G and $\operatorname{ker}(\varphi)=H$ "such homomorphism is called canonical or natural homomorphism".

THEOREM: [The fundamental theorem of group homomorphisms]
Let $\varphi:(G, \star) \rightarrow\left(G^{\prime}, \star^{\prime}\right)$ be a group homomorphism. Then $G / \operatorname{ker}(\varphi) \cong$ $\operatorname{im}(\varphi)$.

Proof Let $K=\operatorname{ker}(\varphi)$. Define $\psi: G \phi K \rightarrow \operatorname{im}(\varphi)$ by $\psi(a \star K)=\varphi(a)$ for all $a \nless K \in G / K$. First of all, we show that φ is well-defined as a map, i.e. $a \star K=b \star K$ implies $\varphi(a)=\varphi(b)$. Note that $a \star K=b \star K \Rightarrow a=b \star k$ for some $k \in K$

$$
\begin{aligned}
& \Longrightarrow \varphi(a)=\varphi(b \star k)=\varphi(b) \star^{\prime} \varphi(k) \\
& =\varphi(b) \star^{\prime} e=\varphi(b) \text { since } k \in K=\operatorname{ker}(\varphi) .
\end{aligned}
$$

Now, we prove that ψ is an isomorphism

1. ψ is a homomorphism:

$$
\begin{aligned}
\psi((a \star K) \star(b \star K)) & =\psi(a \star b \star K)=\varphi(a \star b) \\
& =\varphi(a) \star^{\prime} \varphi(b)=\psi(a \star K) \star^{\prime} \psi(b \star K)
\end{aligned}
$$

2. ψ is onto: Clearly from the definition of ψ.
3. ψ is one-one: Want to show that $\operatorname{ker}(\psi)=\{K\}$. Note that

$$
\begin{aligned}
\operatorname{ker}(\psi) & =\left\{a \star K: \psi(a \star K)=e^{\prime}\right\}=\left\{a \star K: \varphi(a)=e^{\prime}\right\} \\
& =\{a \star K: a \in \operatorname{ker}(\varphi)=K\}=\{K\}
\end{aligned}
$$

Problems: Let $\varphi:(G, \star) \rightarrow\left(G^{\prime}, \star^{\prime}\right)$ be a group homomorphism. Then

1. φ is onto $\Longrightarrow G / \operatorname{ker}(\varphi) \cong G^{\prime}$.
2. G is finite $\Longrightarrow|\varphi(G)|$ divides $|G|$.

ExAMPLE: It is clear that $\{0\} \times \mathbb{Z}_{2} \unlhd \mathbb{Z}_{4} \times \mathbb{Z}_{2}$ because $\mathbb{Z}_{4} \times \mathbb{Z}_{2}$ is an abelian group. Let us show that $\mathbb{Z}_{4} \times \mathbb{Z}_{2} /\{0\} \times \mathbb{Z}_{2} \cong \mathbb{Z}_{4}$. Define a map $\varphi: \mathbb{Z}_{4} \times \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{4}$ by $\varphi(m, n)=m$.

Note that

1. φ is a homomorphism: Let $(m, n),\left(m^{\prime}, n^{\prime}\right) \in \mathbb{Z}_{4} \times \mathbb{Z}_{2}$. Then

$$
\varphi\left((m, n)+\left(m^{\prime}, n^{\prime}\right)\right)=\varphi\left(m+m^{\prime}, n+n^{\prime}\right)=m+m^{\prime}
$$

$$
=\varphi(m, n)+\varphi\left(m^{\prime}, n^{\prime}\right)
$$

2. φ is onto.

$$
\begin{aligned}
\operatorname{im}(\varphi) & =\left\{\varphi(m, n):(m, n) \in \mathbb{Z}_{4} \times \mathbb{Z}_{2}\right\} \\
& =\left\{m:(m, n) \in \mathbb{Z}_{4} \times \mathbb{Z}_{2}\right\}=\mathbb{Z}_{4} .
\end{aligned}
$$

3. $\operatorname{ker}(\varphi)=\{0\} \times \mathbb{Z}_{2}$.

$$
\begin{aligned}
\operatorname{ker}(\varphi) & =\left\{(m, n) \in \mathbb{Z}_{4} \times \mathbb{Z}_{2}: \varphi(m, n)=0\right\} \\
& =\left\{(m, n) \in \mathbb{Z}_{4} \times \mathbb{Z}_{2}: m=0\right\} \\
& =\left\{(0, n) \in \mathbb{Z}_{4} \times \mathbb{Z}_{2}\right\}=\{0\} \times \mathbb{Z}_{2}
\end{aligned}
$$

Thus, $\mathbb{Z}_{4} \times \mathbb{Z}_{2} / \operatorname{ker}(\varphi) \cong \mathbb{Z}_{4}$.

EXERCISES

1. Let (G, \star) be a finite group of order n. Then
(a). Let $n=p q$ (p, q are a prime numbers) and let $H, K \leq G$ (unique subgroups) such that $|H|=p,|K|=q$. Then G is cyclic group.
(b). If $n=p^{h}$ (p is a prime number, and $h \in \mathbb{Z}^{+}$), then G has an
element of order p.
2. Which of the following maps is an isomorphism/ a monomorphism/ an epimorphism:
(a). $\varphi:\left(S_{n}, \circ\right) \rightarrow\left(\mathbb{Z}_{2},+\right)$ defined by

$$
\varphi(\sigma)= \begin{cases}1, & \text { if } \sigma \text { odd } \\ 0, & \text { if } \sigma \text { even }\end{cases}
$$

(b). $\varphi:(\mathbb{R} \backslash\{0\}, \cdot) \rightarrow(\{-1,1\}, \cdot)$ defined by

$$
\varphi(x)= \begin{cases}1, & \text { if } x>0 \\ -1, & \text { if } x<0\end{cases}
$$

3. Let $\varphi:(G, \star) \rightarrow\left(G^{\prime}, \star^{\prime}\right)$ be a group homomorphism, and let $a \in G$.

Prove that
(a). If G is an abelian group, then $\varphi(G)$ is an abelian group.
(b). If G is an abelian group, and φ is onto, then G^{\prime} is an abelian group.
(c). If $o(a)=n$, then $o(\varphi(a)) \mid n$.

Prove that $(\mathbb{C},+) \cong(\mathbb{R} \times \mathbb{R},+)$.
5. Let (G, \star) be a cyclic group, namely $G=\langle a\rangle$. Prove that
(a). if G is finite of order n, then $G \cong \mathbb{Z}_{n}$.
(b). if G is infinite, then $G \cong \mathbb{Z}$.
6. Let $\varphi:(G, \star) \rightarrow\left(G^{\prime}, \star^{\prime}\right)$ be a group isomorphism, and let $a \in G$. Prove that
(a). G is abelian if and only if G^{\prime} is abelian.
(b). $o(a)=o(\varphi(a))$.
(c). G is cyclic if and only if G^{\prime} is cyclic.
7. Show that
(a). $(\mathbb{Z},+) \nsubseteq(\mathbb{Q},+)$.
(b). $(\mathbb{Q},+) \nsupseteq(\mathbb{Q} \backslash\{0\}, \cdot)$.
(c). $(\mathbb{R} \backslash\{0\}, \cdot) \not \not(\mathbb{Q} \backslash\{0\}, \cdot)$.
(d). $(\mathbb{R} \backslash\{0\}, \cdot) \neq(\mathbb{C} \backslash\{0\}, \cdot)$.
(e). $\left(D_{4}, \cdot\right) \not \neq\left(\mathbb{Z}_{8},+\right)$.
(f). $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2},+\right) \nsubseteq\left(\mathbb{Z}_{4},+\right)$.
8. Prove or disprove
(a). There is a homomorphism between any two groups.
(b). There is a finite group isomorphic to an infinite group.
(c). Any two finite groups of the same order are isomorphic.
(d). There is an abelian group isomorphic to a non-abelian group.
(e). The map $\varphi<G \rightarrow G$ defined by $\varphi(x)=x^{-1}$ is a homomorphism for any a group (G, \star).
(f). For any two groups (G, \star) and $\left(G^{\prime}, \star\right)$, we have $G \times G^{\prime} \cong G^{\prime} \times G$.
(g) The map $\varphi:(\mathbb{C},+) \rightarrow(\mathbb{R}, t)$ defined by $\varphi(x+i y)=x+y$ is an epimorphism.
(h). There are 5 subgroups of $4 \mathbb{Z} / 64 \mathbb{Z}$ under the usual addition.
(i). Let $(\mathbb{Z},+)$ be the group of integers. The map $\varphi: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ defined by $\varphi(a, b)=a-b$ is a homomorphism and $\operatorname{ker}(\varphi)=$ $\{(a, a): a \in \mathbb{Z}\}$.
(j). $\mathbb{Z} / n \mathbb{Z} \cong \mathbb{Z}_{n}$ for any positive integer n (under addition).
9. Let (G, \star) be a finite group of order $p q$, where p and q are prime numbers. Prove that any non trivial subgroup of G is cyclic.
10. Let (G, \star) be a group, and let $H \leq G$. Define

$$
N(H)=\left\{x \in G: x^{-1} \star H \star x=H\right\}[\text { Normalizer of } H \text { in } G] .
$$

Show that
(a). $N(H) \leq G$.
(b). $H \unlhd N(H)$.
(c). $N(H)=G$ if and only if $H \unlhd G$.
11. Let $\varphi:(G, \star) \rightarrow\left(G^{\prime}, \star^{\prime}\right)$ be a group homomorphism. Prove that
(a). $\operatorname{ker}(\varphi) \unlhd G$.
(b). $H \unlhd G \Longrightarrow \varphi(H) \unlhd \varphi(G)$.
(c). $H^{\prime} \unlhd G^{\prime} \Longrightarrow \varphi^{-1}\left(H^{\prime}\right) \unlhd G$.
12. Prove that the intersection of any family of normal subgroups of a group (G, \star) is again normal subgroup of G.
13. Let (G, \star) be a group. Prove that
(a). $H, K \leq G$ and $H \unlhd G \Longrightarrow H \star K \leq G$.
(b). $H \unlhd G$ and $K \unlhd G \Longrightarrow H \star K \unlhd G$.
14. Prove or disprove
(a). $(H, \star) \leq(G, \star)$, and H is an abelian subgroup $\Longrightarrow H \unlhd G$.
(b) $(H, \star) \leq(G, \star)$, and G is an abelian group $\Longrightarrow N(H)=G$.
(c). All subgroups of an abelian group are normals.
(d). All subgroups of group with prime order are normals.
(e). If (G, \star) a group and $H \unlhd G$ such that G / H is finite $\Longrightarrow G$ is finite.
(f). There are 6 normal subgroups in the dihedral group D_{4}.
15. Let (G, \star) be a group, and let $H_{1}, H_{2}, \ldots, H_{k}$ be normal subgroups of G such that $H_{1} \cap H_{2} \cap \ldots \cap H_{k}=\{e\}$. Prove that there is a monomorphism $\varphi: G \rightarrow G / H_{1} \times G / H_{2} \times \ldots G / H_{k}$.
16. Let (G, \star) be a group, and let $H \leq G, K \unlhd G$. Prove that

$$
H /(H \cap K) \cong H \star K / K
$$

17. Let (G, \star) be a group, and let $H, K \unlhd G, H \leq K$. Prove that (a). $K / H \unlhd G / H$
(b). $(G / H) /(K / H) \cong G / K$.
18. Which of the following groups are simple?
(a). $(\mathbb{Z},+)$.
(b). $\left(\mathbb{Z}_{p},+\right)$, where p is a prime number.
(c). $\left(S_{3}, \circ\right)$.
(d). $\left(D_{4}, \cdot\right)$.
(e). $(\mathbb{Z} \times \mathbb{Z},+)$.
