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GROUP THEORY: PART II

> =

Homomorphisms of groups

DEFINITION: Let (G, %) and (G', ') be two groups. Amap ¢ : G — G’

is said to be a group homomorphism if for all a,b € G:

p(axb) = p(a) ¥ ¢(b).

A Kkernel of ¢, denoted by ker(¢p), is the set:

ker(p) ={a € G: p(a) =€}

where €’ is the identity of G'. The image of ¢, denoted by im(y), is the

set:

im(¢) = {p(a) € G’ : a € G}.

Note that ker(yp) C G, while im(yp) C G
THEOREM: Let (G, x) and (G', *') be two groups, and let ¢ : G — G’ be
a group homomorphism. Then
1. p(e) = €/, where e and ¢’ are the identities of G and G’ respectively.
2. p(a™) = (p(a)) ™
3. ker(p) <G,
4. im(p) < G

5. ker(y) = {e} <= ¢ is one-one.
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1. p(e) = p(exe) = p(e)*" p(e). On the other hand, p(e) = p(e)+' €.
So,

[N,

ple) * ple) = ple) » €.
By cancellation law, we get p(e) = €'.
2. p(axa™t) = p(e) = €. Since ¢ is a groupthomomorphism, we have
plaxa™) =p(a) ¥ p(a”') =&=p(a) ¥ (p(a)) .
By cancellation law, we get ¢(a ) % (p(a))~ .
3. Let z,y € ker(yp).

e)=e’ [by (1)].
,’'we have () = p(y) = €. Want to show

(a). e € ker(yp) since @
(b). Since =,y € ker(p)

that 2 x y=! € Keér(p), i.e. o(z*y L) = ¢. Note that:

o(y) 2ele) ¥ oy

Gy ) = o(x)

(z) +
o@) % (o)) =€ xe = weh=¢.
Thusker(p) < G.
4. Let2',y € im(p).
(a). € € im(yp) since ' = p(e) € im(p)fbyl)].
(b). Want to show that 2’ ¥ y/'~! €aim (@), We have 2’ = (x) and

Yy = ¢(y) for some z,y € G

pxxy ") =p@) ¥ oy V=) (oy) ="y

So, 2’ ¥ 3yt € im(y) [since z x y~* € G]. Thus im(p) < G.
5. Assume that ker(p) = {e}. Let p(z) = ¢(y). Want to show that
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p(z) = p(y) = () * (p(y) " = wy) ¥ (p(y) ' =e
() =p(@) ¥ o(y™) =€ [by2

— p(zxy ') =¢ since y is group homomorphism

— o(z) ¥

— zxy ' Cker(p) = {Pe=axy ' =¢

:>:U*y’1*y:e*y:y:>x*e:y:>x:y.
Conversely, assume that ¢ is one-one, and let = € ker(yp). Want to
show that x = e.
x € ker(p) ==mp(r) = €' = p(e) [by (1)]

== r =e |since p is one-one].

DEFINITION: A group homomorphism ¢ : G — G’ is said to be
o epimorphism if it is onto, i.e. im(y) = p(G) = G'.
» monomorphism if it is one-one, i.e. ker(¢) = {e}.
o isomorphism if it is epimorphism and monomorphism. In this case,
we say GG isomorphic to G’, and we write G = G'.
o automorphism if it is isomorphism and G = G'.
o trivial homomorphism if p(a) = ¢’ forall a € G.

» identity homomorphism if G = G’ and ¢(a) = a forall a € G.
ExAMPLE: 1. The map ¢ : (R, +) — (R, ) defined by ¢(x) = e” is an
isomorphism and hence R = R™.

Claim:

l. ¢ 1s a group homomorphism: Let z,y € R. Then

plxty)=e"=e"-e = p(x)- oy).
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2. 1S one-one:
ker(p) ={r e R:p(z) =1} ={z e R:e" =1} = {0}.

3. ¢ is onto: Let y € R (codomain). Want to find x € R (domain)
such that p(x) = y. Since y € R™, we can take x = In(y) € R. Note
that

o) = e = "Wz
Thus R = R*.
ExAMPLE: II. Show that the map ¢ : (R\{0},:) — (R",-) defined by

() = |x| is an epimorphism. What is the kernel of (?

Answer:
1. ¢ 1s a group,homomorphism: Let x4y &R. Then

p(x-y) =z yl= 6k [yl = o(z) - o(y).
2. pisonto: Lety € RTacodomain). Wantto find z € R\ {0} (domain)
such that p(z) = y. Since y € RT, we can takews'= y € R\{0}.

Note that

Finally, let us find ker(p):

ker(p) ={z e R\{0} : p(z) =1} ={z e R: || =1} = {-1,1}.
ExampLE: III. Let H be a subgroup of a group (G, *), and let a € G.

Prove that H = ax H xa~ 1.

Recall thata « H xa™ ' = {axhxa™':h e H}.
Defineamap ¢ : H — ax Hxa *by o(h) =axhxa ! forallh € H.

Now, we prove that ¢ is an isomorphism:
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1. ¢ 1s a group homomorphism: Let x,y € H. Then

o(xxy) = ax(zxy)xa ' = (axzxa V) (axyxa ') = o(x)*xo(y).
2. (¢ 1s one-one:

ker(p) ={z € H:p(x) =e} ={r € Huaxx*a ' =e} = {e}.
3. pisonto: Lety € a* H x~a ! (codomain). 'Want to find z € H

(domain) such that p(x) = y. Since y € ax H xa ', there is h € H

such that y = a x h x a~'. We can take x = h € H. Note that

o) =Py = axhxa ' =y.

Thus H = a % H x ar™
ProOBLEMS: Which of the following maps is an isomorphism/ a monomor-
phism/ an epimorphism:
1. p:(Z,+) — (2Z,+) defined by p(z) = 2.
2. ¢m : (Z,+) — (mZ,+) defined by p(x) = mzx, where m € Z*.
3.¢:(2,+4) = (Zy,+) defined by

¢(x) = the reminder when x divided by n.
THEOREM: Let ¢ : (G,*) — (G',«') be a group homomorphism, and

Let H < G,H' < G'. Then
. p(H) < G, where

o(H)={p(h):he H} [image of H under ¢|.
2. ¢ Y (H') < G, where

o '(H)={heG:ph)ec H} [preimage of H' under ¢)|.

1. Let 2,y € ¢(H). Then
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(a). € = g(e) € p(H)sincee € H.
(b). ',y € p(H) implies 2’ = p(z),y" = p(y) for some =,y € H.
Want to show 2’ ' 3/t € p(H), i.e., we must find h € H such

that p(h) = 2’ ¥ iy ~!. Take h = x vy~ € H (since H < G):

p(h) = p(axy ™) = p(a)xo(y ) L@ (0(y) " = 2'xy
2. Letx,y € ¢ '(H'). Then
(a). e € o 1(H') since ¢/ = p(e)ENH'.
(b). z,y € o 1(H') implies (x).)o(y) € H'. Wantto show zxy~! €
¢ 1(H'), i.e., we must prove that p(zxy~ ') € H":
plaxy ) =) < oly™) = o(2) ¥ (p(y)) ' € H'.
THEOREM: (Cayley) Let (G, %) be a group and @ € G. Then
. The map A\, : G — G defined by \,(x) = a x x is a permutation in
Sca, where
S¢ = {all bijections f : G — G}.
2.H={)\:ae G} < S
3. G=EH.

1. It is enough to show that A\, bijective:
(a). Ay is onto: Let y € G (codomain). Want to find x € G (domain)

such that \,(x) = y. Take x = a1 ¥y € G. Then
M(@) = Mala ™t xy) =ax(a P xy) = (axa Hry =exy =1.
(b). Ay is one-one: Let \,(z) = A\, (z’) for some z, 2" € G. Then
a*x = ax1z = x =12’ (by cancellation law).

So, A\, € S¢.
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2. Let A\, \p € H.

(a). Since A\o(z) = exx = xforall x € G. So, A\, € H which is the
identity of Sg.
(b). Note that,

Nt o Xp(2) = N (b x) = DA M h* 2) = \o(2).
Thus, (X))t = A\p-1. Also,
Ao N(z) = N(bx )= a* (bxx) = Nup().
Thus, A\, o Ay = . Now,
Ao O A= Ag 0 Mot = A1 € H.
Hence, H < S¢.
3. Define the mapy™ G — H by ¢(a) =N, forall a € G.
(a). @iis a group homomorphism:deta,b € G.
o(a%xb)/=AXaxp = Aa © N\

(b). ¢ is onto:
im(p) ={\.:a € G} H.

(c). ¢ is one-one: Let p(a) = ¢(b). (Then; in particular \,(e) =
Ap(e). That is,

axe=bxe=—a=0>.

Thus, G = H.
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Cosets and Lagrange’s Theorem

DEFINITION: Let (G, *) be a group, and let H < G, a € G. The set
axH={axH:heH}

is called the left coset of /1 that containing a. The set
Hxa={Hxa:hec H}

is called the right coset of / that containing a. The number of all distinct

left cosets of H, denoted by [G : H], is called the index of H in G.

Note that:
o Hxe=ex 0 = I
o If G is anabelian group, then H x at= H * a.
ExamMpPLE: 1. Consider the symmetric group (53, 0). We know that
H={(123)={e,(123),(132)} <S;.
Letus find H o o and 0 o H for all o € S3. Recall,
Ss={e,(12),(13),(23),(123),(132)}.
The following are all left and right cosets of H:
(123)cH=(132)cH=H
(12)cH=(13)ocH=(23)0cH={(12),(13),(23)}
Ho(123)=Ho(132)ocH=H

Ho(12)=Ho(13)=Ho(23)={(12),(13),(23)}.
Note that, for all 0 € S5, we getc o H = H o 0.
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ExAMPLE: I Let us find all the left and right cosets of H = ((1 2)) in
the symmetric group (S5, 0). The following are all left and right cosets
of H={e,(12)}:
(12)oH=H
(123)oH=(13)0H ={(13),(123)}
(132)0H=(23)0H ={(23),(132)}
Ho(12)=H
Ho(13)=Ho(132)={(13),(132)}
Ho(23)=Ho(123)={(23),(123)}.
Note that, (1 3) o H # H o (1 3).

ExampPLE: III. Let us find all the left and right cosets of H = 3Z as a
subgroup of the group (Z, +). The following are all left and right cosets
of H=1{...,-6,-3,0,3,6,...}:
O+H=H=0+H={...,—-6,-3,0,3,6,...}
1+H={..,-5-2147. ) =H+1
o+ H={ ., -4-1,258, . }Y=H+2
3+H={.,-3,036,9,.. =H+2=H

4+ H={..,-21,4710,..} =H+4=1+H
So, the only distinct left cosets of H are 0 + H,1 + H,2 + H, i.e.,
Z : 3Z] = 3.

THEOREM: Let (G, x) be a group, and let H < G. The set of all distinct

left cosets of H forms a partition of G.

First of all, we have axH # () foralla € H since a = axe € axH.

Now, we need to prove that
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1. If ax H and b x H are left cosets of H, then eithera x H = bx H or
axHNbx H = (.

2.G=J axH.
aceG

Let us prove (1): Assume that a x H Nbx H # (). Want to prove
axH =0xH.

Letx € (ax HNbx H). Then x = a *h;and x = b x hy for some
h1, he € H. Hence,
axhy =bxhy =054 a = +hyx hi' € H.

So, b 'xaxH = H =sb%b'xaxH =bxH — exax H =

bxH—axH =bxH.

Now, we prove (2): It is clear fromw/definition of the left cosets,

J ax H'C G.On the other handvasSumethat a € G. Then a € a x H

acl

(as we'shown previously). So, a €° [ JyaxH. Itfollows that G'C V) axH.
a€lG e

THEOREM: Let (G, *) be a group, and let H < G. Then |aH| = H.

Defineamap f: H — ax H by f(h) =axhforallh € H. We

prove that f is bijection.

I. fisonto: Lety € ax H. Want to find x € H such that f(y) = =.
Since y € a* H, there is h € H such that y = a x h. So, we can take

x = h. Note that
fx) = f(h) =axh=y.
2. fisone-one: Let f(h) = f(Rh'). Then

axh=axh = h=h"(cancellation laws in a group).
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THEOREM: [Lagrange Theorem] Let (G, ) be a finite group, and let

H < G. Then |H| divides |G|, and hence |G| = [G : H]||H|.

Let{a;xH,as*H, ... apxH} be the set of all distinct left cosets

of Hin G. Thatis, |G : H] = k. Then

k
G=UajxH= |G| =1 xH| +laox H| + ... + |ay x H]
j=1

— |G| = |H| 4. %+ |H| (k— times)
— |G| =k|H|= |G : H||H|.

Thus, |H| divides |G]|.

PROBLEMS: [Applications on Lagrange Theorem] Let (G, x) be a finite
group of order n. Then
1. If a € G, then a" = e.

2. If n = p (prime number), then G is cyclic group.

Nermal subgroups

DEFINITION: Let (G, %) be a group, and let H < G, a € G. Then H is
said to be a normal subgroup of G, written H < G if ax H = H x a for
alla € H.

Note that:

» Any group (G, %) has {e} and G as normal subgroups.

o If (G, ) is an abelian group, then any subgroup of G is normal.
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ExAMPLE: I. Consider the subgroup H = 3Z of the group (Z,+). Then
H < Z because (Z, +) is an abelian group. In fact, 3Z + a = a + 3Z for
alla € Z.

ExampLE: II. Consider the subgroup H = ((1 2)) of the group (S5, o).
Then H ¢ Ss because (1 3) o H # H o (1 3). Note that, H = {e, (1 2)}
and
(13)oH={(13)oe,(13)o(12)} ={(13),(123)}
Ho(13)={eo(13),(12)0(13)}={(13),(132)}.
Hence, (1 3)o H # H o (1 3).

PROBLEMS: Let (G, ) be a group, and let H < G. Then the following
statements are equivalent

1. H<CG.

2.2 'xhxz € Hforallz € Gand h € H.

3.2 'xHxx C Hforallx € G.

4. 27V« Hxx = H forall z € G.

ExAMPLE: Let (G, %) be a group. Let us show that Z(G) < G.

1. First, we prove that Z(G) < 'G:"it is clear that e € Z(G) since
re = ex = x for all x € G. Now, let z,y € Z(G). Want to prove
that v x4y~ € Z(G). Note that, for all a € G:

(zxy Dxa=zxaxy ! sincey 'xa=axy
ax(xxy ) sincexxa=axum.

2. Secondly, we prove that Z(G) < G: itis enough to prove that 71 xhx
x € Z(G) forallz € Gand h € Z(G). Note that for all x € G and
h € Z(G), wehave xxh = hxx “Definition of Z(G)”. Consequently,
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r lxxxh=alxhxr = exh=atxhxx = h=a21xh*z.

So,z ' xhxx=he Z(G)forallz € Gand h € Z(G).

THEOREM: Let (G,*) be a group, and let H < G with [G : H] = 2.
Then H < G.

Let = be an element in G and + & H. “Then x x H # H and
H xx # H. Since, there only two left cosets and two right cosets of
H “|G : H =27, we get {H,x x H} = {H,H x x}. It follows that
H %z = xx H for every x € G~Thus, H < G.

DEFINITION: A group (G, x) is said to be simple if the only normal

subgroups G are {e} and G itself.

ExaMPLE: 1. The group (Zs,+) is a simple group. In fact, the only

normal subgroups of (Zs, +) are {0} and Zs.

ExampLE: II. The group (R, +) is not simple group. In fact, (Z,+)
is normal subgroup of (R, +) since (R, +) is abelian group. Moreover,

Z # R and Z # {0}.

Quotient groups

Assume that (G, ) is a group, and H < G. Let G/ H be the set of all
distinct cosets of H in GG. For all a x H, b* H in G/H, define

(axH)* (bx H) =ax*bx* H.

Is x a binary operation on G/ H?

Answer: Yes.

We must prove that x is well-defined binary operation on G/H as
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follows:
LetaxH = a'xH and bxH = b'xH. Wantto prove axbxH = a'xb'xH.

Since ax H = o' x H and bx H = I « H, there are two element
hi,ho € H such that a = a’ x h; and b = & * hy. Also, we have
b=l x hy*xb % hy € H because H < G. Now,

(@' *xV) Px(axb) ="t xd P xaxb
= b xda™ ok (0 % hy) x (U * hy)
= Se x hy * b x ho
=V xh xV xhy € H.
Thus, (o’ x ') x (ax'b) &H and hence a xbx H = a' xV « H.

In fact, (G/H, x),forms a group called the\quotient group (or factor
group) of G by H.

What is the identity of G/ H?

Answer: H = e x H, where e is the identity of G.

What is the inverse of a x H in G/H?

Answer: (ax H)™' = a! « H, where @ '(is'the’inverse of a in G.
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ExAMPLE: 1. We know that (Z, +) is an abelian group. So 6Z < Z. Let

us find the quotient group Z/6Z.:
04+6Z=6Z=1{...,—12,-6,0,6,12,...};
1+6zZ={...,—11,-5,1,7,13,...};
24+6Z=1{...,—10,-4,2,8,14,...};
3+6Z=1{...,-9,-3,3,9,15,...};
446Z=1{...,—-8,—-2,4,10,16,...};
5+6Z=1{..,—7,—1,511,17,...}
6+6Z=1{..,—6,0,6,1218,...} = 6Z.

So, Z/6Z = {6Z,1 + 6Z,2 + 6Z,3 + 6Z,4 + 6Z,5 + 6Z}.

ExampLE: II. In this example, we construct the quotient group of the
abelian group (Z;s, +) by the subgroup H = (6). First of all, we have
H = {0,6,12}. Now,

0+ H=H ={0,6,12};

1+ H={1,7,13};

2+ H ={2,8,14};

3+ H ={3,9,15};

4+ H = {4,10,16};

5+ H = {5,11,17};

6+ H = {6,12,0} = H.
So, Zis/H = {H,1+ H,2+ H,3+ H,A+ H,5+ H)}.
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PROBLEMS: Let (G, %) be a group, and let H < G. Then
. G is abelian = G/ H is abelian.
2. G = (a) (cyclic generated by a) = G/H = (a x H) (cyclic gener-
ated by a x H).
3. Gisfinite = |G/H| =[G : H| = |‘ff‘|
4. There is an epimorphism ¢ with domain G and ker(¢) = H “such

homomorphism is called canonical or natural homomorphism”.

THEOREM: [The fundamental theorem of group homomorphisms]
Let p : (G,x) = (G',«") be a group homomorphism. Then G/ ker(p) =

im(p).

Let K =ker(y). Define v : G} K*=im(p) by ¥(a* K) = ¢(a)
for all a x 'K "e-G /K. First of all,"we'show that ¢ is well-defined as a
map, i'e. ax K = b* K impliesp(a)’= ©(b). Note that
ax K =bx K =>"a="0%k for some k € K
— ¢la) = e(bx k) = (b)) o (k)
= o(b) ¥ e = p(b) sincew’'e K = ker(yp).

Now, we prove that v is an isomorphism

1. 7 1s a homomorphism:

Y((ax K)*x (bx K))=1(axbx K)=¢@(axb)

= (@) ¥ p(B) = wlax K) # (b x K).
2. 1 is onto: Clearly from the definition of ).
3. 1) is one-one: Want to show that ker(y)) = { K'}. Note that
ker(¢)) ={ax K :¢(ax K)=¢}={ax K : p(a) =€}
={ax K :a€ker(p) =K} ={K}.
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PROBLEMS: Let ¢ : (G, *) — (G, *’) be a group homomorphism. Then
. pisonto = G/ ker(p) = G
2. G is finite = |¢(G)| divides |G|.

ExXAMPLE: It is clear that {0} x Zy Q74 X Zs because Z, X Zs is an
abelian group. Let us show that Z, x Zy/{0} x Zy = Z,. Define a map
@ : Ly X Ly — Zy by p(m,n) =m.

Note that

1. ¢ is a homomorphism: Let (m,n), (m’,n’) € Z4 X Zs. Then
o((m,n) +(min')) = o(m +m',n+n') =m+m'
= ¢(m,n)<t @(m’, n').
2. ¢ 1s onto:
im() = {p(m,n)a(m,n) € Zy X Zs}
= {m'(min) € Zy X Ly} = Y.
3. ker(p) = {0} x Za:
ker(¢) = {(m,n) € Zy X Za,: golanyn) = 0}
= {(m,n) € Zpx %y sm = 0}
={(0,n) € ZyxZs} = {0} X Zo.
Thus, Zy X Zsy/ ker(p) = Zy.

EXERCISES

I. Let (G, *) be a finite group of order n. Then
(a). Letn = pq (p, q are a prime numbers) and let H, K < G (unique
subgroups) such that |H| = p, | K| = ¢q. Then G is cyclic group.
(b). If n = p" (p is a prime number, and h € Z*), then G has an
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element of order p.
2. Which of the following maps is an isomorphism/ a monomorphism/
an epimorphism:
(a). ¢ : (Sp,0) = (Zs,+) defined by
1, if onodd;

p(o) =
0, if'e.even.

(b). ¢ : (R\{0},-) = ({—1, 1}, Adefined by
L, ifz>0;
() =
~1, ifz <O.
3. Let ¢ : (G,*) — (G's%) be a group homomorphism, and let a € G.
Prove that
(a). If G is'an abelan group, then ((G)is anabelian group.
(b). If GLis an abelian group,,and ©uis onto, then GG’ is an abelian
group.
(c). If o(a) = n, theno(w(a))|n.
4. Prove that (C, +) = (R xR, +).
5. Let (G, x) be a cyclic group, namely G'=((a). Prove that
(a). if G is finite of order n, then G'S Z,.
(b). if GG is infinite, then G = Z.
6. Let ¢ : (G,x) — (G',*') be a group isomorphism, and let a € G.
Prove that
(a). G is abelian if and only if G’ is abelian.
(b). o(a) = o(p(a)).
(c). G is cyclic if and only if G’ is cyclic.
7. Show that
(@). (Z,+) % (Q,+).



CONTENTS _19_

10.

(b). (Q,+) 2 (Q\{0}, ).
(©). (R\{0},-) 2 (Q\{0},").
(d). (R\{0},-) 2 (C\{0},-).
(©). (Dy,-) & (Zs, +).

(). (Zy X Zo,+) 2 (Zy,+).

. Prove or disprove

(a). There is a homomorphism between any two groups.

(b). There is a finite group isomorphic to an infinite group.

(c). Any two finite groups-of the same order are isomorphic.

(d). There is an abelian‘group isomorphic to a non-abelian group.

(¢). The map ¢ G = G defined by ¢(x) = z~! is a homomorphism
for any'a group (G, x).

(f). For any two groups (G, ) and(G"j*), we have G x G' = G' x G.

(2). The'map ¢ : (C,+) —_(R)%) defined by p(x + iy) = + y is
an epimorphism.

(h). There are 5 subgroups of 47 /647 undertheusual addition.

(i). Let (Z,+) be the group of integers. "The map ¢ : Z x Z — Z
defined by ¢(a,b) = a — b is ahomomorphism and ker(yp) =
{(a,a) :a € Z}.

(). Z/nZ = 7Z, for any positive integer n (under addition).

. Let (G, ) be a finite group of order pg, where p and ¢ are prime

numbers. Prove that any non trivial subgroup of G is cyclic.

Let (G, *) be a group, and let H < (. Define
N(H)={x € G:2 '+ Hxx = H} [Normalizer of H in G.

Show that
(a). N(H) <G.
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(b). H < N(H).
(c). N(H) =G ifandonlyif H JG.

I1. Let v : (G,*) — (G, ') be a group homomorphism. Prove that
(a). ker(p) 9 G.

(b). HAG = p(H) < p(G).
(0. H<LG = o Y(H') <G.

12. Prove that the intersection of any, family of normal subgroups of a
group (G, *) is again normal subgroup of G.

13. Let (G, x) be a group. Proyve that
(a). HH K <Gand HdG— H+x K <.

(b). H<Gand K QG — H+x K <.

14. Prove or disprove
(a). (H,*) < (G, *), and H is an abelian subgroup —= H < G.
(b).(H, %) < (G, *), and G istan,abelian group = N(H )<= G.

(c). All subgroups of an abelian group are normals,

(d). All subgroups of group with prime order aresnormals.

(e). If (G, ) a group and H < G such that G/H is finite = G is
finite.

(f). There are 6 normal subgroups ifrthe dihedral group Dy.

15. Let (G, %) be a group, and let Hy, Ho, . .., Hj be normal subgroups
of G such that H; N Hy N ... N H = {e}. Prove that there is a
monomorphism ¢ : G — G/Hy x G/Hy x ...G/Hy.

16. Let (G, *) be a group, and let H < G, K < G. Prove that

H/(HNK)= HxK/K.
17. Let (G, %) be a group, and let H, K < G, H < K. Prove that
(2). K/H <G/H
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(b). (G/H)/(K/H)=G/K.
18. Which of the following groups are simple?

(@). (Z,+).
(b). (Z,,+), where p is a prime number.
(©). (S3,0) '\x
(d). (D, ) v
(

(e). (Z x Z, +). b
Q




