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GROUP THEORY: PART II

Homomorphisms of groups

Definition: Let (G, ?) and (G′, ?′) be two groups. A map ϕ : G→ G′

is said to be a group homomorphism if for all a, b ∈ G:

ϕ(a ? b) = ϕ(a) ?′ ϕ(b).

A kernel of ϕ, denoted by ker(ϕ), is the set:

ker(ϕ) = {a ∈ G : ϕ(a) = e′}

where e′ is the identity of G′. The image of ϕ, denoted by im(ϕ), is the

set:

im(ϕ) = {ϕ(a) ∈ G′ : a ∈ G}.

Note that ker(ϕ) ⊆ G, while im(ϕ) ⊆ G′.

Theorem: Let (G, ?) and (G′, ?′) be two groups, and let ϕ : G→ G′ be

a group homomorphism. Then

1. ϕ(e) = e′, where e and e′ are the identities of G and G′ respectively.

2. ϕ(a−1) = (ϕ(a))−1.

3. ker(ϕ) ≤ G.

4. im(ϕ) ≤ G′.

5. ker(ϕ) = {e} ⇐⇒ ϕ is one-one.

Proof



Dr
. M

oh
am
me
d A

li

Ibr
ahi
m

Al
abb

oo
d

CONTENTS – 2 –

1. ϕ(e) = ϕ(e?e) = ϕ(e)?′ϕ(e). On the other hand, ϕ(e) = ϕ(e)?′ e′.

So,

ϕ(e) ?′ ϕ(e) = ϕ(e) ?′ e′.

By cancellation law, we get ϕ(e) = e′.

2. ϕ(a?a−1) = ϕ(e) = e′. Since ϕ is a group homomorphism, we have

ϕ(a ? a−1) = ϕ(a) ?′ ϕ(a−1) = e′ = ϕ(a) ?′ (ϕ(a))−1.

By cancellation law, we get ϕ(a−1) = (ϕ(a))−1.

3. Let x, y ∈ ker(ϕ).

(a). e ∈ ker(ϕ) since ϕ(e) = e′ [by (1)].

(b). Since x, y ∈ ker(ϕ), we have ϕ(x) = ϕ(y) = e′. Want to show

that x ? y−1 ∈ ker(ϕ), i.e. ϕ(x ? y−1) = e′. Note that:

ϕ(x ? y−1) = ϕ(x) ?′ ϕ(y) = ϕ(x) ?′ ϕ(y−1)

= ϕ(x) ?′ (ϕ(y))−1 = e′ ? e′−1 = e′ ? e′ = e′.

Thus ker(ϕ) ≤ G.

4. Let x′, y′ ∈ im(ϕ).

(a). e′ ∈ im(ϕ) since e′ = ϕ(e) ∈ im(ϕ) [by (1)].

(b). Want to show that x′ ?′ y′−1 ∈ im(ϕ). We have x′ = ϕ(x) and

y′ = ϕ(y) for some x, y ∈ G.

ϕ(x ? y−1) = ϕ(x) ?′ ϕ(y−1) = ϕ(x) ?′ (ϕ(y))−1 = x′ ?′ y′−1.

So, x′ ?′ y′−1 ∈ im(ϕ) [since x ? y−1 ∈ G]. Thus im(ϕ) ≤ G′.

5. Assume that ker(ϕ) = {e}. Let ϕ(x) = ϕ(y). Want to show that
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x = y:

ϕ(x) = ϕ(y) =⇒ ϕ(x) ?′ (ϕ(y))−1 = ϕ(y) ?′ (ϕ(y))−1 = e′

=⇒ ϕ(x) ?′ (ϕ(y))−1 = ϕ(x) ?′ ϕ(y−1) = e′ [ by 2]

=⇒ ϕ(x ? y−1) = e′ since ϕ is group homomorphism

=⇒ x ? y−1 ∈ ker(ϕ) = {e} =⇒ x ? y−1 = e

=⇒ x ? y−1 ? y = e ? y = y =⇒ x ? e = y =⇒ x = y.

Conversely, assume that ϕ is one-one, and let x ∈ ker(ϕ). Want to

show that x = e.

x ∈ ker(ϕ) =⇒ ϕ(x) = e′ = ϕ(e) [by (1)]

=⇒ x = e [ since ϕ is one-one].

Definition: A group homomorphism ϕ : G→ G′ is said to be

epimorphism if it is onto, i.e. im(ϕ) = ϕ(G) = G′.

monomorphism if it is one-one, i.e. ker(ϕ) = {e}.

isomorphism if it is epimorphism and monomorphism. In this case,

we say G isomorphic to G′, and we write G ∼= G′.

automorphism if it is isomorphism and G = G′.

trivial homomorphism if ϕ(a) = e′ for all a ∈ G.

identity homomorphism if G = G′ and ϕ(a) = a for all a ∈ G.

Example: I. The map ϕ : (R,+)→ (R+, ·) defined by ϕ(x) = ex is an

isomorphism and hence R ∼= R+.

Claim:

1. ϕ is a group homomorphism: Let x, y ∈ R. Then

ϕ(x+ y) = ex+y = ex · ey = ϕ(x) · ϕ(y).
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2. ϕ is one-one:

ker(ϕ) = {x ∈ R : ϕ(x) = 1} = {x ∈ R : ex = 1} = {0}.

3. ϕ is onto: Let y ∈ R+ (codomain). Want to find x ∈ R (domain)

such that ϕ(x) = y. Since y ∈ R+, we can take x = ln(y) ∈ R. Note

that

ϕ(x) = ex = eln(y) = y.

Thus R ∼= R+.

Example: II. Show that the map ϕ : (R\{0}, ·) → (R+, ·) defined by

ϕ(x) = |x| is an epimorphism. What is the kernel of ϕ?

Answer:

1. ϕ is a group homomorphism: Let x, y ∈ R. Then

ϕ(x · y) = |x · y| = |x| · |y| = ϕ(x) · ϕ(y).

2. ϕ is onto: Let y ∈ R+ (codomain). Want to find x ∈ R\{0} (domain)

such that ϕ(x) = y. Since y ∈ R+, we can take x = y ∈ R\{0}.

Note that

ϕ(x) = |x| = x = y.

Finally, let us find ker(ϕ):

ker(ϕ) = {x ∈ R\{0} : ϕ(x) = 1} = {x ∈ R : |x| = 1} = {−1, 1}.

Example: III. Let H be a subgroup of a group (G, ?), and let a ∈ G.

Prove that H ∼= a ? H ? a−1.

Proof Recall that a ? H ? a−1 = {a ? h ? a−1 : h ∈ H}.

Define a map ϕ : H → a ? H ? a−1 by ϕ(h) = a ? h ? a−1 for all h ∈ H .

Now, we prove that ϕ is an isomorphism:
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1. ϕ is a group homomorphism: Let x, y ∈ H . Then

ϕ(x?y) = a?(x?y)?a−1 = (a?x?a−1)?(a?y?a−1) = ϕ(x)?ϕ(y).

2. ϕ is one-one:

ker(ϕ) = {x ∈ H : ϕ(x) = e} = {x ∈ H : a ? x ? a−1 = e} = {e}.

3. ϕ is onto: Let y ∈ a ? H ? a−1 (codomain). Want to find x ∈ H

(domain) such that ϕ(x) = y. Since y ∈ a ? H ? a−1, there is h ∈ H

such that y = a ? h ? a−1. We can take x = h ∈ H . Note that

ϕ(x) = ϕ(h) = a ? h ? a−1 = y.

Thus H ∼= a ? H ? a−1.

Problems: Which of the followingmaps is an isomorphism/ amonomor-

phism/ an epimorphism:

1. ϕ : (Z,+)→ (2Z,+) defined by ϕ(x) = 2x.

2. ϕm : (Z,+)→ (mZ,+) defined by ϕ(x) = mx, wherem ∈ Z+.

3. ϕ : (Z,+)→ (Zn,+) defined by

ϕ(x) = the reminder when x divided by n.

Theorem: Let ϕ : (G, ?) → (G′, ?′) be a group homomorphism, and

Let H ≤ G,H ′ ≤ G′. Then

1. ϕ(H) ≤ G′, where

ϕ(H) = {ϕ(h) : h ∈ H} [image of H under ϕ].

2. ϕ−1(H ′) ≤ G, where

ϕ−1(H ′) = {h ∈ G : ϕ(h) ∈ H ′} [preimage of H ′ under ϕ].

Proof

1. Let x′, y′ ∈ ϕ(H). Then
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(a). e′ = ϕ(e) ∈ ϕ(H) since e ∈ H .

(b). x′, y′ ∈ ϕ(H) implies x′ = ϕ(x), y′ = ϕ(y) for some x, y ∈ H .

Want to show x′ ?′ y′−1 ∈ ϕ(H), i.e., we must find h ∈ H such

that ϕ(h) = x′ ?′ y′−1. Take h = x ? y−1 ∈ H (since H ≤ G):

ϕ(h) = ϕ(x?y−1) = ϕ(x)?′ϕ(y−1) = ϕ(x)?′(ϕ(y))−1 = x′?′y′−1.

2. Let x, y ∈ ϕ−1(H ′). Then

(a). e ∈ ϕ−1(H ′) since e′ = ϕ(e) ∈ H ′.

(b). x, y ∈ ϕ−1(H ′) impliesϕ(x), ϕ(y) ∈ H ′. Want to show x?y−1 ∈

ϕ−1(H ′), i.e., we must prove that ϕ(x ? y−1) ∈ H ′:

ϕ(x ? y−1) = ϕ(x) ?′ ϕ(y−1) = ϕ(x) ?′ (ϕ(y))−1 ∈ H ′.

Theorem: (Cayley) Let (G, ?) be a group and a ∈ G. Then

1. The map λa : G → G defined by λa(x) = a ? x is a permutation in

SG, where

SG = {all bĳections f : G→ G}.

2. H = {λa : a ∈ G} ≤ SG.

3. G ∼= H .

Proof

1. It is enough to show that λa bĳective:

(a). λa is onto: Let y ∈ G (codomain). Want to find x ∈ G (domain)

such that λa(x) = y. Take x = a−1 ? y ∈ G. Then

λa(x) = λa(a−1 ? y) = a ? (a−1 ? y) = (a ? a−1) ? y = e ? y = y.

(b). λa is one-one: Let λa(x) = λa(x′) for some x, x′ ∈ G. Then

a ? x = a ? x′ =⇒ x = x′ (by cancellation law).

So, λa ∈ SG.
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2. Let λa, λb ∈ H .

(a). Since λe(x) = e ? x = x for all x ∈ G. So, λe ∈ H which is the

identity of SG.

(b). Note that,

λb−1 ◦ λb(x) = λb−1(b ? x) = b−1 ? (b ? x) = λe(x).

Thus, (λb)−1 = λb−1. Also,

λa ◦ λb(x) = λa(b ? x) = a ? (b ? x) = λa?b(x).

Thus, λa ◦ λb = λa?b. Now,

λa ◦ (λb)−1 = λa ◦ λb−1 = λa?b−1 ∈ H.

Hence, H ≤ SG.

3. Define the map ϕ : G→ H by ϕ(a) = λa for all a ∈ G.

(a). ϕ is a group homomorphism: Let a, b ∈ G.

ϕ(a ? b) = λa?b = λa ◦ λb.

(b). ϕ is onto:

im(ϕ) = {λa : a ∈ G} = H.

(c). ϕ is one-one: Let ϕ(a) = ϕ(b). Then, in particular λa(e) =

λb(e). That is,

a ? e = b ? e =⇒ a = b.

Thus, G ∼= H .
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Cosets and Lagrange’s Theorem

Definition: Let (G, ?) be a group, and let H ≤ G, a ∈ G. The set

a ? H = {a ? H : h ∈ H}

is called the left coset of H that containing a. The set

H ? a = {H ? a : h ∈ H}

is called the right coset ofH that containing a. The number of all distinct

left cosets of H , denoted by [G : H], is called the index of H in G.

Note that:

H ? e = e ? H = H .

If G is an abelian group, then H ? a = H ? a.

Example: I. Consider the symmetric group (S3, ◦). We know that

H = 〈(1 2 3)〉 = {e, (1 2 3), (1 3 2)} ≤ S3.

Let us find H ◦ σ and σ ◦H for all σ ∈ S3. Recall,

S3 = {e, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}.

The following are all left and right cosets of H:

(1 2 3) ◦H = (1 3 2) ◦H = H

(1 2) ◦H = (1 3) ◦H = (2 3) ◦H = {(1 2), (1 3), (2 3)}

H ◦ (1 2 3) = H ◦ (1 3 2) ◦H = H

H ◦ (1 2) = H ◦ (1 3) = H ◦ (2 3) = {(1 2), (1 3), (2 3)}.
Note that, for all σ ∈ S3, we get σ ◦H = H ◦ σ.
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Example: II. Let us find all the left and right cosets of H = 〈(1 2)〉 in

the symmetric group (S3, ◦). The following are all left and right cosets

of H = {e, (1 2)}:

(1 2) ◦H = H

(1 2 3) ◦H = (1 3) ◦H = {(1 3), (1 2 3)}

(1 3 2) ◦H = (2 3) ◦H = {(2 3), (1 3 2)}

H ◦ (1 2) = H

H ◦ (1 3) = H ◦ (1 3 2) = {(1 3), (1 3 2)}

H ◦ (2 3) = H ◦ (1 2 3) = {(2 3), (1 2 3)}.
Note that, (1 3) ◦H 6= H ◦ (1 3).

Example: III. Let us find all the left and right cosets of H = 3Z as a

subgroup of the group (Z,+). The following are all left and right cosets

of H = {. . . ,−6,−3, 0, 3, 6, . . .}:

0 +H = H = 0 +H = {. . . ,−6,−3, 0, 3, 6, . . .}

1 +H = {. . . ,−5,−2, 1, 4, 7, . . .} = H + 1

2 +H = {. . . ,−4,−1, 2, 5, 8, . . .} = H + 2

3 +H = {. . . ,−3, 0, 3, 6, 9, . . .} = H + 2 = H

4 +H = {. . . ,−2, 1, 4, 7, 10, . . .} = H + 4 = 1 +H

So, the only distinct left cosets of H are 0 + H, 1 + H, 2 + H , i.e.,

[Z : 3Z] = 3.

Theorem: Let (G, ?) be a group, and let H ≤ G. The set of all distinct

left cosets of H forms a partition of G.

Proof First of all, we have a?H 6= ∅ for all a ∈ H since a = a?e ∈ a?H .

Now, we need to prove that
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1. If a ? H and b ? H are left cosets of H , then either a ? H = b ? H or

a ? H ∩ b ? H = ∅.

2. G =
⋃

a∈G

a ? H .

Let us prove (1): Assume that a ? H ∩ b ? H 6= ∅. Want to prove

a ? H = b ? H .

Let x ∈ (a ? H ∩ b ? H). Then x = a ? h1 and x = b ? h2 for some

h1, h2 ∈ H . Hence,

a ? h1 = b ? h2 =⇒ b−1 ? a = ?h2 ? h
−1
1 ∈ H.

So, b−1 ? a ? H = H =⇒ b ? b−1 ? a ? H = b ? H =⇒ e ? a ? H =

b ? H =⇒ a ? H = b ? H .

Now, we prove (2): It is clear from definition of the left cosets,⋃
a∈G

a ? H ⊆ G. On the other hand, assume that a ∈ G. Then a ∈ a ? H

(aswe shown previously). So, a ∈
⋃

a∈G

a?H . It follows thatG ⊆
⋃

a∈G

a?H .

Theorem: Let (G, ?) be a group, and let H ≤ G. Then |aH| = H .

Proof Define a map f : H → a ? H by f(h) = a ? h for all h ∈ H . We

prove that f is bĳection.

1. f is onto: Let y ∈ a ? H . Want to find x ∈ H such that f(y) = x.

Since y ∈ a ?H , there is h ∈ H such that y = a ? h. So, we can take

x = h. Note that

f(x) = f(h) = a ? h = y.

2. f is one-one: Let f(h) = f(h′). Then

a ? h = a ? h′ =⇒ h = h′ (cancellation laws in a group).
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Theorem: [Lagrange Theorem] Let (G, ?) be a finite group, and let

H ≤ G. Then |H| divides |G|, and hence |G| = [G : H]|H|.

Proof Let {a1?H, a2?H, . . . , ak ?H} be the set of all distinct left cosets

of H in G. That is, [G : H] = k. Then

G =
k⋃

j=1
aj ? H =⇒ |G| = |a1 ? H|+ |a2 ? H|+ . . .+ |ak ? H|

=⇒ |G| = |H|+ . . .+ |H| (k − times)

=⇒ |G| = k|H| = [G : H]|H|.
Thus, |H| divides |G|.

Problems: [Applications on Lagrange Theorem] Let (G, ?) be a finite

group of order n. Then

1. If a ∈ G, then an = e.

2. If n = p (prime number), then G is cyclic group.

Normal subgroups

Definition: Let (G, ?) be a group, and let H ≤ G, a ∈ G. Then H is

said to be a normal subgroup of G, writtenH E G if a ?H = H ? a for

all a ∈ H .

Note that:

Any group (G, ?) has {e} and G as normal subgroups.

If (G, ?) is an abelian group, then any subgroup of G is normal.
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Example: I. Consider the subgroup H = 3Z of the group (Z,+). Then

H E Z because (Z,+) is an abelian group. In fact, 3Z+ a = a+ 3Z for

all a ∈ Z.

Example: II. Consider the subgroup H = 〈(1 2)〉 of the group (S3, ◦).

Then H 5 S3 because (1 3) ◦H 6= H ◦ (1 3). Note that, H = {e, (1 2)}

and

(1 3) ◦H = {(1 3) ◦ e, (1 3) ◦ (1 2)} = {(1 3), (1 2 3)}

H ◦ (1 3) = {e ◦ (1 3), (1 2) ◦ (1 3)} = {(1 3), (1 3 2)}.
Hence, (1 3) ◦H 6= H ◦ (1 3).

Problems: Let (G, ?) be a group, and let H ≤ G. Then the following

statements are equivalent

1. H E G.

2. x−1 ? h ? x ∈ H for all x ∈ G and h ∈ H .

3. x−1 ? H ? x ⊆ H for all x ∈ G.

4. x−1 ? H ? x = H for all x ∈ G.

Example: Let (G, ?) be a group. Let us show that Z(G) EG.

1. First, we prove that Z(G) ≤ G: it is clear that e ∈ Z(G) since

xe = ex = x for all x ∈ G. Now, let x, y ∈ Z(G). Want to prove

that x ? y−1 ∈ Z(G). Note that, for all a ∈ G:

(x ? y−1) ? a = x ? a ? y−1 since y−1 ? a = a ? y−1

a ? (x ? y−1) since x ? a = a ? x.

2. Secondly, we prove thatZ(G)EG: it is enough to prove that x−1?h?

x ∈ Z(G) for all x ∈ G and h ∈ Z(G). Note that for all x ∈ G and

h ∈ Z(G), we have x?h = h?x “Definition ofZ(G)”. Consequently,
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x−1 ?x?h = x−1 ?h?x =⇒ e?h = x−1 ?h?x =⇒ h = x−1 ?h?x.

So, x−1 ? h ? x = h ∈ Z(G) for all x ∈ G and h ∈ Z(G).

Theorem: Let (G, ?) be a group, and let H ≤ G with [G : H] = 2.

Then H E G.

Proof Let x be an element in G and x 6∈ H . Then x ? H 6= H and

H ? x 6= H . Since, there only two left cosets and two right cosets of

H “[G : H] = 2”, we get {H, x ? H} = {H,H ? x}. It follows that

H ? x = x ? H for every x ∈ G. Thus, H E G.

Definition: A group (G, ?) is said to be simple if the only normal

subgroups G are {e} and G itself.

Example: I. The group (Z5,+) is a simple group. In fact, the only

normal subgroups of (Z5,+) are {0} and Z5.

Example: II. The group (R,+) is not simple group. In fact, (Z,+)

is normal subgroup of (R,+) since (R,+) is abelian group. Moreover,

Z 6= R and Z 6= {0}.

Quotient groups

Assume that (G, ?) is a group, and H EG. Let G/H be the set of all

distinct cosets of H in G. For all a ? H , b ? H in G/H , define

(a ? H) ? (b ? H) = a ? b ? H.

Is ? a binary operation on G/H?

Answer: Yes.

We must prove that ? is well-defined binary operation on G/H as
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follows:

Let a?H = a′?H and b?H = b′?H . Want to prove a?b?H = a′?b′?H .

Since a ? H = a′ ? H and b ? H = b′ ? H , there are two element

h1, h2 ∈ H such that a = a′ ? h1 and b = b′ ? h2. Also, we have

b′−1 ? h1 ? b
′ ? h2 ∈ H because H EG. Now,

(a′ ? b′)−1 ? (a ? b) = b′−1 ? a′−1 ? a ? b

= b′−1 ? a′−1 ? (a′ ? h1) ? (b′ ? h2)

= b′−1 ? e ? h1 ? b
′ ? h2

= b′−1 ? h1 ? b
′ ? h2 ∈ H.

Thus, (a′ ? b′)−1 ? (a ? b) ∈ H and hence a ? b ? H = a′ ? b′ ? H .

In fact, (G/H, ?) forms a group called the quotient group (or factor

group) of G by H .

What is the identity of G/H?

Answer: H = e ? H , where e is the identity of G.

What is the inverse of a ? H in G/H?

Answer: (a ? H)−1 = a−1 ? H , where a−1 is the inverse of a in G.
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Example: I. We know that (Z,+) is an abelian group. So 6ZE Z. Let

us find the quotient group Z/6Z:

0 + 6Z = 6Z = {. . . ,−12,−6, 0, 6, 12, . . .};

1 + 6Z = {. . . ,−11,−5, 1, 7, 13, . . .};

2 + 6Z = {. . . ,−10,−4, 2, 8, 14, . . .};

3 + 6Z = {. . . ,−9,−3, 3, 9, 15, . . .};

4 + 6Z = {. . . ,−8,−2, 4, 10, 16, . . .};

5 + 6Z = {. . . ,−7,−1, 5, 11, 17, . . .};

6 + 6Z = {. . . ,−6, 0, 6, 12, 18, . . .} = 6Z.
So, Z/6Z = {6Z, 1 + 6Z, 2 + 6Z, 3 + 6Z, 4 + 6Z, 5 + 6Z}.

Example: II. In this example, we construct the quotient group of the

abelian group (Z18,+) by the subgroup H = 〈6〉. First of all, we have

H = {0, 6, 12}. Now,

0 +H = H = {0, 6, 12};

1 +H = {1, 7, 13};

2 +H = {2, 8, 14};

3 +H = {3, 9, 15};

4 +H = {4, 10, 16};

5 +H = {5, 11, 17};

6 +H = {6, 12, 0} = H.

So, Z18/H = {H, 1 +H, 2 +H, 3 +H, 4 +H, 5 +H}.
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Problems: Let (G, ?) be a group, and let H EG. Then

1. G is abelian =⇒ G/H is abelian.

2. G = 〈a〉 (cyclic generated by a) =⇒ G/H = 〈a ? H〉 (cyclic gener-

ated by a ? H).

3. G is finite =⇒ |G/H| = [G : H] = |G|
|H|

.

4. There is an epimorphism ϕ with domain G and ker(ϕ) = H “such

homomorphism is called canonical or natural homomorphism”.

Theorem: [The fundamental theorem of group homomorphisms]

Let ϕ : (G, ?)→ (G′, ?′) be a group homomorphism. ThenG/ ker(ϕ) ∼=

im(ϕ).

Proof LetK = ker(ϕ). Define ψ : G/K → im(ϕ) by ψ(a ?K) = ϕ(a)

for all a ? K ∈ G/K. First of all, we show that ϕ is well-defined as a

map, i.e. a ? K = b ? K implies ϕ(a) = ϕ(b). Note that

a ? K = b ? K =⇒ a = b ? k for some k ∈ K

=⇒ ϕ(a) = ϕ(b ? k) = ϕ(b) ?′ ϕ(k)

= ϕ(b) ?′ e = ϕ(b) since k ∈ K = ker(ϕ).
Now, we prove that ψ is an isomorphism

1. ψ is a homomorphism:

ψ((a ? K) ? (b ? K)) = ψ(a ? b ? K) = ϕ(a ? b)

= ϕ(a) ?′ ϕ(b) = ψ(a ? K) ?′ ψ(b ? K).
2. ψ is onto: Clearly from the definition of ψ.

3. ψ is one-one: Want to show that ker(ψ) = {K}. Note that

ker(ψ) = {a ? K : ψ(a ? K) = e′} = {a ? K : ϕ(a) = e′}

= {a ? K : a ∈ ker(ϕ) = K} = {K}.
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Problems: Let ϕ : (G, ?)→ (G′, ?′) be a group homomorphism. Then

1. ϕ is onto =⇒ G/ ker(ϕ) ∼= G′.

2. G is finite =⇒ |ϕ(G)| divides |G|.

Example: It is clear that {0} × Z2 E Z4 × Z2 because Z4 × Z2 is an

abelian group. Let us show that Z4 × Z2/{0} × Z2 ∼= Z4. Define a map

ϕ : Z4 × Z2 → Z4 by ϕ(m,n) = m.

Note that

1. ϕ is a homomorphism: Let (m,n), (m′, n′) ∈ Z4 × Z2. Then

ϕ((m,n) + (m′, n′)) = ϕ(m+m′, n+ n′) = m+m′

= ϕ(m,n) + ϕ(m′, n′).
2. ϕ is onto:

im(ϕ) = {ϕ(m,n) : (m,n) ∈ Z4 × Z2}

= {m : (m,n) ∈ Z4 × Z2} = Z4.

3. ker(ϕ) = {0} × Z2:

ker(ϕ) = {(m,n) ∈ Z4 × Z2 : ϕ(m,n) = 0}

= {(m,n) ∈ Z4 × Z2 : m = 0}

= {(0, n) ∈ Z4 × Z2} = {0} × Z2.

Thus, Z4 × Z2/ ker(ϕ) ∼= Z4.

EXERCISES

1. Let (G, ?) be a finite group of order n. Then

(a). Let n = pq (p, q are a prime numbers) and letH,K ≤ G (unique

subgroups) such that |H| = p, |K| = q. Then G is cyclic group.

(b). If n = ph (p is a prime number, and h ∈ Z+), then G has an
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element of order p.

2. Which of the following maps is an isomorphism/ a monomorphism/

an epimorphism:

(a). ϕ : (Sn, ◦)→ (Z2,+) defined by

ϕ(σ) =


1, if σ odd;

0, if σ even.

(b). ϕ : (R\{0}, ·)→ ({−1, 1}, ·) defined by

ϕ(x) =


1, if x > 0;

−1, if x < 0.
3. Let ϕ : (G, ?)→ (G′, ?′) be a group homomorphism, and let a ∈ G.

Prove that

(a). If G is an abelian group, then ϕ(G) is an abelian group.

(b). If G is an abelian group, and ϕ is onto, then G′ is an abelian

group.

(c). If o(a) = n, then o(ϕ(a))|n.

4. Prove that (C,+) ∼= (R× R,+).

5. Let (G, ?) be a cyclic group, namely G = 〈a〉. Prove that

(a). if G is finite of order n, then G ∼= Zn.

(b). if G is infinite, then G ∼= Z.

6. Let ϕ : (G, ?) → (G′, ?′) be a group isomorphism, and let a ∈ G.

Prove that

(a). G is abelian if and only if G′ is abelian.

(b). o(a) = o(ϕ(a)).

(c). G is cyclic if and only if G′ is cyclic.

7. Show that

(a). (Z,+) � (Q,+).
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(b). (Q,+) � (Q\{0}, ·).

(c). (R\{0}, ·) � (Q\{0}, ·).

(d). (R\{0}, ·) � (C\{0}, ·).

(e). (D4, ·) � (Z8,+).

(f). (Z2 × Z2,+) � (Z4,+).

8. Prove or disprove

(a). There is a homomorphism between any two groups.

(b). There is a finite group isomorphic to an infinite group.

(c). Any two finite groups of the same order are isomorphic.

(d). There is an abelian group isomorphic to a non-abelian group.

(e). The map ϕ : G→ G defined by ϕ(x) = x−1 is a homomorphism

for any a group (G, ?).

(f). For any two groups (G, ?) and (G′, ?), we haveG×G′ ∼= G′×G.

(g). The map ϕ : (C,+) → (R,+) defined by ϕ(x + iy) = x + y is

an epimorphism.

(h). There are 5 subgroups of 4Z/64Z under the usual addition.

(i). Let (Z,+) be the group of integers. The map ϕ : Z × Z → Z

defined by ϕ(a, b) = a − b is a homomorphism and ker(ϕ) =

{(a, a) : a ∈ Z}.

(j). Z/nZ ∼= Zn for any positive integer n (under addition).

9. Let (G, ?) be a finite group of order pq, where p and q are prime

numbers. Prove that any non trivial subgroup of G is cyclic.

10. Let (G, ?) be a group, and let H ≤ G. Define

N(H) = {x ∈ G : x−1 ? H ? x = H} [Normalizer of H in G].

Show that

(a). N(H) ≤ G.
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(b). H EN(H).

(c). N(H) = G if and only if H EG.

11. Let ϕ : (G, ?)→ (G′, ?′) be a group homomorphism. Prove that

(a). ker(ϕ) EG.

(b). H EG =⇒ ϕ(H) E ϕ(G).

(c). H ′ EG′ =⇒ ϕ−1(H ′) EG.

12. Prove that the intersection of any family of normal subgroups of a

group (G, ?) is again normal subgroup of G.

13. Let (G, ?) be a group. Prove that

(a). H,K ≤ G and H EG =⇒ H ? K ≤ G.

(b). H EG and K EG =⇒ H ? K EG.

14. Prove or disprove

(a). (H, ?) ≤ (G, ?), and H is an abelian subgroup =⇒ H EG.

(b). (H, ?) ≤ (G, ?), and G is an abelian group =⇒ N(H) = G.

(c). All subgroups of an abelian group are normals.

(d). All subgroups of group with prime order are normals.

(e). If (G, ?) a group and H E G such that G/H is finite =⇒ G is

finite.

(f). There are 6 normal subgroups in the dihedral group D4.

15. Let (G, ?) be a group, and let H1, H2, . . . , Hk be normal subgroups

of G such that H1 ∩ H2 ∩ . . . ∩ Hk = {e}. Prove that there is a

monomorphism ϕ : G→ G/H1 ×G/H2 × . . . G/Hk.

16. Let (G, ?) be a group, and let H ≤ G,K EG. Prove that

H/(H ∩K) ∼= H ? K/K.

17. Let (G, ?) be a group, and let H,K EG,H ≤ K. Prove that

(a). K/H EG/H
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(b). (G/H)/(K/H) ∼= G/K.

18. Which of the following groups are simple?

(a). (Z,+).

(b). (Zp,+), where p is a prime number.

(c). (S3, ◦).

(d). (D4, ·).

(e). (Z× Z,+).


